生物(wù)法处理(lǐ)高盐废水中氨氮的研究进展
在食品加工过程中常需使用(yòng)含盐溶液或干盐来获得最终产品;随着人们生活水平的提高和需求增大,海水养殖业快速发展,并产生了大量含盐养殖废水;工厂在满足社会运转的同时,会出现大量的脱硫、電(diàn)渗析浓缩液等废水;这些源头产生的大量含盐废水亟须处理(lǐ)。
当废水溶解盐质量浓度大于35 g/L时可(kě)称為(wèi)高盐废水,高盐不会直接给生态环境造成严重的危害,但含有(yǒu)大量有(yǒu)机物(wù)和氮源(主要以氨氮形式存在)的高盐废水,比如榨菜废水、养殖废水和脱硫脱硝废水,若不进行有(yǒu)效处理(lǐ)而直接排入河道或海洋中,会在水體(tǐ)中大量富集,进而出现水體(tǐ)富营养化,严重时引起水體(tǐ)黑臭现象。
对于高盐氨氮废水,目前的处理(lǐ)方式主要有(yǒu)物(wù)理(lǐ)化學(xué)法和生物(wù)法,综合比较之下,生物(wù)法在其运行投资费用(yòng)和环保方面都优于物(wù)理(lǐ)化學(xué)法,因而得到人们的重视。
在生物(wù)法处理(lǐ)高盐废水中有(yǒu)机物(wù)和氨氮时,提升盐度后有(yǒu)机物(wù)仍然具有(yǒu)较高的去除率,而氨氮去除率受抑制程度明显,故本研究主要对其中难降解的氨氮进行讨论。
目前处理(lǐ)高盐废水中的氨氮所用(yòng)到的生物(wù)法主要有(yǒu)活性污泥法、颗粒污泥法、生物(wù)膜法和复合工艺等,这些方法在处理(lǐ)高盐氨氮废水时都有(yǒu)其适用(yòng)的范围和局限性,筆(bǐ)者将对这些方法进行全面的讨论,概述各种工艺的优缺点,探讨高盐环境下生物(wù)法降解氨氮的解决思路,以期為(wèi)该类废水的处理(lǐ)提供参考。
一、不同生物(wù)法处理(lǐ)高盐氨氮废水时的表现
不同工艺处理(lǐ)高盐废水中氨氮时的表现见表 1。
表 1 不同工艺处理(lǐ)高盐废水中氨氮时的表现
活性污泥法及其改进工艺是处理(lǐ)市政污水最广泛使用(yòng)的方法,但是悬浮生長(cháng)的污泥结构暴露在大量高盐环境下时,会抑制污泥中微生物(wù)活性,导致对氨氮的去除急剧下降甚至微生物(wù)死亡。
表1中工艺1~5為(wèi)传统活性污泥法处理(lǐ)高盐氨氮废水时的表现,可(kě)以看出当废水中盐度范围在10~15 g/L以下时,使用(yòng)传统的活性污泥法处理(lǐ)氨氮是可(kě)行的,但超过20 g/L时,处理(lǐ)效果急剧下降。
工艺6~8為(wèi)厌氧氨氧化(anaerobic ammonium oxidation,Anammox)活性污泥法,虽然Anammox在低C/N下的废水中有(yǒu)利于成為(wèi)优势菌种,很(hěn)适合处理(lǐ)含盐量低于30 g/L的低C/N工业废水,但可(kě)以看出当氨氮废水中盐度超过30 g/L时,处理(lǐ)效果急剧下降。所以活性污泥法不适用(yòng)于处理(lǐ)高盐氨氮废水。
由活性污泥颗粒化形成的好氧颗粒污泥(AGC,表1中工艺11~15),由于其从外层到内层溶解氧浓度呈梯度变化,使颗粒同时具有(yǒu)了好氧、缺氧和厌氧區(qū),这种特殊结构提升了生物(wù)多(duō)样性,增加了污泥的脱氮途径,增强脱氮效果,从而缓解了高盐浓度下的抑制作用(yòng)。
L. Quartaroli等研究高盐环境下脱氮性能(néng)良好的好氧颗粒污泥内部结构,发现其中包括异养硝化菌、好氧反硝化菌、厌氧氨氧化菌和传统的硝化与反硝化菌,这说明好氧颗粒污泥脱氮是由多(duō)种途径组成。但是超过50 g/L左右盐度后,好氧颗粒污泥会不可(kě)避免地发生颗粒破碎、解體(tǐ)等现象,影响去除效率,导致出水水质恶化。
常见生物(wù)转盘、接触氧化、生物(wù)滤池等生物(wù)膜法,其本质是将活性污泥固定在特定的载體(tǐ)上避免被冲刷到反应器以外,这一附着生長(cháng)的特性可(kě)以在吸附降解废水中有(yǒu)机污染物(wù)的同时使大部分(fēn)微生物(wù)群落不直接暴露在有(yǒu)毒、有(yǒu)害环境中,获得了一定的抗毒害能(néng)力。如表 1中工艺16~20,在面对含有(yǒu)50 g/L左右以下溶解盐的氨氮废水时,对氨氮的降解能(néng)力表现良好。
把膜生物(wù)反应器(membrane bioreactor,MBR)应用(yòng)到含盐氨氮废水中,可(kě)以使其耐盐能(néng)力遠(yuǎn)超活性污泥法,如表 1中工艺21~23,经过一定时间的耐盐驯化后,反应器的耐盐能(néng)力大大提升,在40 g/L盐度下依然有(yǒu)良好的处理(lǐ)氨氮效果。
但MBR中的膜污染问题会导致运行和维护成本的增高,尤其在高盐环境下微生物(wù)分(fēn)泌的胞外聚合物(wù)(extracellular polymeric substances,EPS)增加,使膜污染问题更加严重,影响其在实际工程中的运用(yòng)。
為(wèi)了减少膜污染带来的MBR运行费用(yòng)昂贵问题,把生物(wù)膜和膜组件结合在一起,将会大幅度提高微生物(wù)高盐环境下的降解能(néng)力以及缓解膜污染问题,由此产生了生物(wù)膜耦合MBR工艺,如工艺24~26。工艺24、25在缓解膜污染的同时,还使生物(wù)膜耐盐性进一步提高,而工艺26因為(wèi)接种了嗜盐菌,故在100 g/L的极高盐度下还对氨氮有(yǒu)理(lǐ)想的去除效果。
二、提高生物(wù)法耐盐能(néng)力的有(yǒu)效途径
综合以上几种生物(wù)法,发现它们之所以能(néng)够在高盐环境下还可(kě)以对氨氮有(yǒu)很(hěn)强的降解能(néng)力,主要有(yǒu)以下几种作用(yòng):
(1)形成生物(wù)膜或污泥颗粒化保护内部脱氮菌以此减缓高盐的抑制;
(2)增加了生物(wù)量和提高了生物(wù)多(duō)样性,从而加强脱氮能(néng)力;
(3)固定耐盐脱氮菌,防止流失。下面对这些作用(yòng)进行分(fēn)析。
Zichao Wang等把生物(wù)膜和活性污泥放入同一个反应器中进行耐盐驯化,考察它们的硝化速率后发现,随着进水含盐量的提高,生物(wù)膜的受抑制程度遠(yuǎn)遠(yuǎn)小(xiǎo)于活性污泥,类似地,Huining Zhang等利用(yòng)高通量检测30 g/L盐分(fēn)下活性污泥与生物(wù)膜内微生物(wù)群落的种群结构,发现不适于在30 g/L盐分(fēn)生長(cháng)的脱氮菌依然存活于生物(wù)膜中。
这些都说明生物(wù)膜的存在保护了不耐盐的微生物(wù),使微生物(wù)活性和脱氮性能(néng)提高。
S. Corsino等把嗜盐活性污泥分(fēn)别放入AGS和SBR两种反应器中接种,AGS以好氧颗粒污泥运行方式逐渐颗粒化,SBR以活性污泥方式保持不变。因為(wèi)是用(yòng)同一嗜盐污泥接种,两个反应器在30 g/L下虽污泥形态不一样,但脱氮效果相当且菌群一致。当提升盐分(fēn)至70 g/L时,AGS和SBR对氨氮的去除效果分(fēn)别降低至51%和43%,其氨氮降解速率下降程度也与Zichao Wang等类似,出现明显不同的下降幅度,得出活性污泥颗粒化或形成生物(wù)膜更适合于高盐环境下运行,Fang Fang等也有(yǒu)类似的发现。
综上所述,高盐环境下生物(wù)膜或污泥颗粒化更有(yǒu)利于微生物(wù)的繁殖生長(cháng),硝化菌在生物(wù)膜内相比于在活性污泥内更能(néng)抵抗有(yǒu)害环境的影响,这一点在颗粒污泥中更加明显,因為(wèi)活性污泥松散的结构更容易使脱氮菌质壁分(fēn)离导致死亡,造成脱氮效果变差。
提高生物(wù)量增加了反应器的脱氮性能(néng),这是因為(wèi)在反应器容积不变的情况下,利用(yòng)生物(wù)膜或MBR工艺,可(kě)以明显提高单位體(tǐ)积内反应器的污泥浓度。
即使高盐环境会对脱氮菌产生抑制,污泥浓度的提高也会使反应器运行起来并取得良好的脱氮效果。
另一方面,硝化菌生物(wù)多(duō)样性的提高会使脱氮有(yǒu)多(duō)种途径,比较常见的有(yǒu)自养与异养的硝化菌和反硝化菌,以及Anammox等。
如果运行条件得当(如溶解氧梯度变化),这些菌在生物(wù)膜或颗粒污泥中可(kě)以同时存在,多(duō)种脱氮路径的出现就会大大强化反应器脱氮性能(néng)。
Huining Zhang等在相同条件下运行活性污泥和固定式生物(wù)膜两种反应器,发现在60 g/L盐分(fēn)下生物(wù)膜中微生物(wù)丰富度和多(duō)样性指数均优于活性污泥,并且生物(wù)膜脱氮效果优于活性污泥。
然而可(kě)以耐受更高盐度的脱氮菌只有(yǒu)少数,盐度越高,脱氮菌种多(duō)样性越低,保护脱氮菌的生物(wù)膜随着盐度的提升,效果也越来越弱,这就导致当上升至某一盐度以上时微生物(wù)多(duō)样性优势不复存在,脱氮效果急剧下降。
L. Quartaroli等在SBR中培养AGS,当盐度从0上升至30 g/L时,Shannon指数从4.14下降至2.56,盐分(fēn)上升至40 g/L时,氨氮去除率下降至60%左右;
类似地,Jianhang Qu等利用(yòng)多(duō)级接触氧化处理(lǐ)高盐氨氮废水时,当盐分(fēn)从35 g/L上升至70 g/L时,第1、3、5、7格室内生物(wù)膜的Shannon指数分(fēn)别从3.89、4.71、4.69、5.29下降至3.57、2.77、3.84、4.00,对进水氨氮的去除率也从60%下降至20%以下。
Chengliang Liu等在上流式固定床中形成Anammox生物(wù)膜对氨氮进行处理(lǐ),由于菌种比较单一,其在35.06 g/L盐度下去除效果迅速下降,而普通的生物(wù)膜工艺(序号11~15)在50 g/L才会出现这种情况。
脱氮菌随着环境中的盐度提升,其产率系数下降和对氨氮利用(yòng)率变低,致使增殖能(néng)力下降,世代周期延長(cháng)。
生物(wù)膜可(kě)以使微生物(wù)有(yǒu)一个较長(cháng)的世代周期,而MBR膜组件完全截留微生物(wù)使污泥龄方便控制,所以这两种工艺提供了防止耐盐脱氮菌流失的优点,故相比传统活性污泥法,耐盐驯化时间更短,能(néng)够在相对较短时间内适应新(xīn)的高盐环境。
在上文(wén)中所提到的AGS和SBR两种反应器中,S. Corsino等将盐分(fēn)从30 g/L提升至70 g/L时AGS和SBR的去除氨氮效果急剧下降,不同的是AGS在第18天恢复稳定运行,SBR则需要27 d才可(kě)以完成。
Zichao Wang等在生物(wù)膜与活性污泥的耐盐驯化实验中发现,耐盐脱氮菌在生物(wù)膜中所占的比例均高于活性污泥,这表明大量的耐盐脱氮菌富集在生物(wù)膜中。
类似地,Fang Fang等将Anammox污泥颗粒化后,其在135 d内就可(kě)在30 g/L氯化钠盐度下有(yǒu)良好的脱氮效果,相比Anammox活性污泥(工艺6~7),其耐盐驯化时间大大缩减。
三、生物(wù)法处理(lǐ)含盐氨氮废水时常见问题解决方案
亚硝酸盐氧化菌(nitrite-oxidizing bacteria,NOB)和氨氧化菌(ammonia-oxidizing bacteria,AOB)都会在高盐环境中被抑制,而NOB相比AOB更容易受到盐度的影响,导致AOB产生的亚硝酸盐无法被NOB及时有(yǒu)效地降解成硝酸盐,因此在含盐氨氮废水运行过程中亚硝酸盐积累是一个普遍现象。
M. Pronk等利用(yòng)AGS处理(lǐ)含盐氨氮废水,发现AOB不受20 g/L以下氯化钠盐度的影响,而NOB在20 g/L盐度下完全被抑制,亚硝酸盐出现了大量的积累。
Yueshu Gao等利用(yòng)生物(wù)膜降解含盐氨氮废水,结果发现当进水中氯化钠从0上升至35 g/L时,AOB活性没有(yǒu)任何影响,NOB被严重抑制,只有(yǒu)把盐分(fēn)控制在15~25 g/L范围内,亚硝酸盐积累现象才会慢慢消失。
简陈生使用(yòng)MBR对含盐氨氮废水进行处理(lǐ),NOB在30.5~51.02 g/L盐度范围一直处于被抑制状态。
赵佳伟等以亚硝酸盐為(wèi)唯一氮源,发现将盐分(fēn)提升至40 g/L时,亚硝酸盐可(kě)以有(yǒu)99%去除率,而再提升至60 g/L时,对亚硝酸盐的去除效果并不会随着运行时间好转。
分(fēn)析这些生物(wù)膜、AGS和MBR工艺中NOB的表现,可(kě)以知道亚硝酸盐积累成了高盐氨氮废水生物(wù)法处理(lǐ)时常见的难题,但是将盐分(fēn)控制在一定范围之内亚硝酸盐积累还是可(kě)以得到解决。
相对地,强化NOB效果去解决亚硝酸盐积累问题,不如利用(yòng)NOB的耐盐性较差的特点,彻底抑制NOB,比如通过改变反应器工况条件来建立短程硝化-反硝化或短程硝化-Anammox脱氮途径,从而去解决这一问题。
S. Corsino等利用(yòng)AGS成功在50 g/L盐度下对废水中的氨氮取得90%以上的去除率,研究发现其脱氮机理(lǐ)是亚硝化-反硝化过程。
类似地,魏良良和Zonglian She等也实现了这种高盐下部分(fēn)硝化-反硝化的脱氮途径。
高盐环境下,微生物(wù)的生長(cháng)和代謝(xiè)能(néng)力的降低造成了生物(wù)产量减少,若反应器中污泥浓度比较稳定,排除的污泥量就会变少,这就导致了高盐氨氮废水生物(wù)法处理(lǐ)的污泥龄延長(cháng)。
延長(cháng)的污泥龄虽然有(yǒu)助于生物(wù)多(duō)样性的提高,从而增强脱氮能(néng)力,但是在高盐环境下,过長(cháng)的污泥龄会令污泥中难生物(wù)降解物(wù)质增加,以MLVSS/MLSS下降的形式表现出来,反而使脱氮能(néng)力降低。
S. Corsino等发现,运行AGS处理(lǐ)含盐氨氮废水时,整个实验过程中颗粒污泥从黄色光滑形态慢慢演变成了棕色不规则形态,直至实验结束MLVSS/MLSS下降至50%左右。
随后S. Corsino等為(wèi)了解决污泥中难生物(wù)降解物(wù)质增加现象,让活性污泥和AGS分(fēn)别在14 d和27 d两种污泥龄下进行实验,结果发现污泥龄从27 d降低至14 d时,活性污泥中的难生物(wù)降解物(wù)质质量分(fēn)数从35%降低至27%,好氧颗粒污泥中MLVSS/MLSS值从45%升高至65%,两种工艺的生物(wù)活性也得到了提高,表明较低的污泥龄确实能(néng)够使难生物(wù)降解物(wù)质在污泥中的比例降低从而增强脱氮效果。
利用(yòng)生物(wù)法处理(lǐ)含盐废水时,随着盐分(fēn)的升高,不能(néng)适应高盐环境的微生物(wù)会发生质壁分(fēn)离等严重危害微生物(wù)生存的现象,具體(tǐ)表现為(wèi)丝状菌、原生动物(wù)和后生动物(wù)种类大幅度减少甚至消失。
丝状菌的减少会引起颗粒污泥的结构变得破碎,活性污泥中的菌胶团变得松散,导致轻质的污泥或游离菌體(tǐ)漂浮在液面上,另一方面较少的原生动物(wù)和后生动物(wù)令游离菌體(tǐ)、有(yǒu)机颗粒不能(néng)被及时地清除,进一步导致了上清液浑浊现象。
这种出水浊度加重现象,既不利于泥水分(fēn)离,又(yòu)会造成反应系统中微生物(wù)大量流失,造成系统对氨氮处理(lǐ)效果变差。
这种问题虽然可(kě)以用(yòng)MBR工艺完全截留微生物(wù)的特性得到解决,但是会相应地增加更多(duō)的膜污染,是一个亟须解决的难点。
宋伟龙為(wèi)了解决高盐环境下污泥絮體(tǐ)崩溃以及微生物(wù)活性受抑制现象,进而引起除污性能(néng)下降和膜污染加剧的问题,利用(yòng)生物(wù)膜工艺保护微生物(wù),在有(yǒu)效保护微生物(wù)的同时还可(kě)以对使浊度变高的生物(wù)质进行吸附降解,使膜污染周期从10 d延長(cháng)至44 d,上清液浑浊问题得到一定控制。
Hanqing Wang等观察MBR和生物(wù)膜MBR两种反应器的膜污染情况,结果发现随着废水中盐度从0升至60 g/L时,MBR系统在短短几天之内跨膜压差超过30 kPa,而生物(wù)膜MBR则显示出良好的抗膜污染能(néng)力,可(kě)以说明生物(wù)膜确实能(néng)够有(yǒu)效地对引起浊度变高的物(wù)质进行吸附和降解。
在高盐环境下,脱氮菌极為(wèi)敏感,这不仅使其用(yòng)于异化代謝(xiè)的生物(wù)能(néng)过少,造成出水氨氮变高,还会令其自身生長(cháng)变得缓慢从而延長(cháng)了耐盐驯化时间。
如表 1所示,不同的工艺耐盐驯化所用(yòng)的时间有(yǒu)快有(yǒu)慢,其中Anammox最慢,这可(kě)能(néng)是因為(wèi)其本身的世代周期長(cháng)于其他(tā)菌群,导致耐盐菌不能(néng)很(hěn)快富集,活性污泥法次之,生物(wù)膜与复合工艺所用(yòng)的耐盐驯化时间相对其他(tā)两种较快。
然而,相同的工艺使用(yòng)类似的反应器上升到相近的盐分(fēn)所用(yòng)的驯化时间也有(yǒu)不小(xiǎo)的差异,这可(kě)以推断出在耐盐驯化过程中还是有(yǒu)一定的科(kē)學(xué)规律可(kě)循,找出其特点可(kě)以在较短的时间内提升最大的盐分(fēn),节约宝贵的时间。
赵佳伟等通过耐盐驯化建立盐度分(fēn)别為(wèi)10、20、40 g/L的三种生物(wù)膜反应器,得出当盐分(fēn)小(xiǎo)于20 g/L时该种反应器不需要梯度升盐,可(kě)直接启动并能(néng)够在一个月内获得成熟的硝化生物(wù)膜达到良好的脱氮效果。
S. Navada等為(wèi)了缩短生物(wù)膜反应器耐盐驯化所用(yòng)的时间,建立四种不同的升盐速率,分(fēn)别為(wèi)每日增加1、2、6、15 g/L溶解盐,提升到32 g/L时停止。
结果发现40 d后以每日15 g/L的升盐速率其降解氨氮的能(néng)力最高,而1 g/L的升盐速率反而降解效果最差,这说明盐分(fēn)的提高并不是越慢越好,科(kē)學(xué)升盐才可(kě)以有(yǒu)理(lǐ)想的处理(lǐ)效果。
四、总结
(1) 通过对各种工艺的运行效果进行分(fēn)析,得出传统活性污泥法不适用(yòng)对高盐氨氮废水进行处理(lǐ),以生物(wù)膜、污泥颗粒化和膜组件这些生物(wù)强化方法处理(lǐ)盐度超过35 g/L的高盐氨氮废水是可(kě)行的。
(2) 分(fēn)析了工艺有(yǒu)效脱氮方法,得出延長(cháng)合适的污泥龄、提高生物(wù)量和微生物(wù)多(duō)样性并以生物(wù)膜的形式运行反应器可(kě)以大幅度地提升反应器在高盐下的脱氮性能(néng)。
(3) 列举出了生物(wù)法处理(lǐ)含盐氨氮废水时,会出现溶液中亚硝酸盐积累、污泥中无机盐积累、上清液浑浊和耐盐驯化时间長(cháng)等问题,并给出了合理(lǐ)的建议。
推荐文(wén)章
-
近年来,牙科(kē)综合治疗台水路(dental unit waterline,DUWL)卫生情况在國(guó)内逐渐得到了重视,同时多(duō)个地方标准已经出台,如北京市于2019年12月25日发布了《DB11/T 1703—2019口腔综合治疗台水路消毒技术规范》,浙江省于2021年01月29日发布了《DB33/T 2307-2021 牙科(kē)水路系统清洗消毒技术规范》。 其实,在國(guó)际上各个國(guó)家在更早的时间就开始重视牙科(kē)综合治疗台水路污染相关问题,并制定了相关规范,本文(wén)对各个國(guó)家在此方面的标准情况做以下总结: 國(guó)外关于牙科(kē)综合治疗台水路相关标准 1996 年美國(guó)牙医协会 ( American Dental Association,ADA) 针对牙科(kē)治疗台水系统的污染问题,制定了一个理(lǐ)想的标准,即要求用(yòng)于非外科(kē)手术的牙科(kē)用(yòng)水的细菌含量在 200cfu/ml 以下; 颁布实施了技术规范《环境管理(lǐ)实践指南: 口腔综合治疗台水路》 ( Guidelines for Practice Success,Managing the Regulatory Environment: Dental Unit Waterlines) 。 美國(guó)疾病预防控制中心制订了《牙科(kē)设置感染预防实践总结( 2003) 》( Summary of Infection Preve...
评论